PS100 Worksheet #4 Chapters 8 & 9	Date	Section	TA			
Name (print)	NetID	Name (print)			NetID	
Name (print)	NetID	Name (print)			NetID	

Title: Conservation Laws

Objectives: Students will describe how conservation laws apply to a real situation.

Instructions: Make the predictions then watch the video clips and animations. See if you understand the laws well enough to use them to make predictions.

mstructions. Iv	take the predictions to	ich watch the video chips and	d animations. See if you understand the laws well enough to use them to h	iake predictions.
Ifwrite the	And	Thenwhat do you	And/Butwrite your observations of what actually happened	ThereforeIf the laws don't
law that applies		predict will happen. Does		match your predictions, you
best to the		the quantity increase,		need to explain what's wrong
situation.		decrease or remain the		with your prediction, not
		same.		what's wrong with the law.
	1. Two objects of	The total momentum after	See: http://lectureonline.cl.msu.edu/~mmp/kap6/cd157a.htm or	
	unequal mass	A ▼ =	http://www.mrwaynesclass.com/teacher/Impulse/SimFriction/home.html	
	traveling at equal	—	Set the velocities for the red and blue blocks to 50 and -50 (or 5 and -5)	
	speed hit each		respectively. Set the mass for the red block to 1 and the mass for the	
	other. (No friction,	The big block's speed	blue block to 2.	
	no deformation)	after		
		▲ ▼ =	Blue block speed before after	
		The small block's speed		
		after	Red block speed before after	
		arter		
		▲ ▼ =	Total momentum before after	
	2. An ice skater	What happens to her	http://ps100.byu.edu/resources/unit1/chapter8/chapter8_5.aspx	
	pulls her arms in as	speed?		
	she spins	A — —		
	T	▲ ▼ =		
		What happens to her		
		angular momentum?		
		▲ ▼ =		

3. Opposite charge balls are placed near each other and released	The total energy of the balls A	http://ps100.byu.edu/resources/unit1/chapter9/chapter9 3.aspx	
4. Like charged balls are placed near each other and released	The total energy of the balls	http://ps100.byu.edu/resources/unit1/chapter9/chapter9_3.aspx	
5. A mass as it bobs up and down on a spring	Total energy: Elastic potential (internal) energy: Gravitational potential energy: Kinetic energy:	http://ps100.byu.edu/online_course/video/7spring2.flv	